鱼C论坛

 找回密码
 立即注册
查看: 3116|回复: 6

[技术交流] Python线程指南>

[复制链接]
发表于 2012-11-2 16:35:41 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
线程的5种状态,状态转换的过程如下图所示:

                               
登录/注册后可看大图
1.jpg
线程同步(锁)多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。
锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。
线程与锁的交互如下图所示:
2.jpg

线程通信(条件变量)然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程"create"创建的。如果"set"或者"print" 在"create"还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是"set"和"print"将需要一个无限循环——他们不知道"create"什么时候会运行,让"create"在运行后通知"set"和"print"显然是一个更好的解决方案。于是,引入了条件变量。条件变量允许线程比如"set"和"print"在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉"set" 和"print"条件已经有了,你们该起床干活了;然后"set"和"print"才继续运行。线程与条件变量的交互如下图所示: 线程运行和阻塞的状态转换最后看看线程运行和阻塞状态的转换。
3.jpg
3-1.jpg


阻塞有三种情况:
同步阻塞是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态;
等待阻塞是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定;
而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。
4.jpg

threadPython通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。
  • # encoding: UTF-8
  • import thread
  • import time
  • # 一个用于在线程中执行的函数
  • def func():
  •     for i in range(5):
  •         print 'func'
  •         time.sleep(1)
  •     # 结束当前线程
  •     # 这个方法与thread.exit_thread()等价
  •     thread.exit() # 当func返回时,线程同样会结束
  • # 启动一个线程,线程立即开始运行
  • # 这个方法与thread.start_new_thread()等价
  • # 第一个参数是方法,第二个参数是方法的参数
  • thread.start_new(func, ()) # 方法没有参数时需要传入空tuple
  • # 创建一个锁(LockType,不能直接实例化)
  • # 这个方法与thread.allocate_lock()等价
  • lock = thread.allocate()
  • # 判断锁是锁定状态还是释放状态
  • print lock.locked()
  • # 锁通常用于控制对共享资源的访问
  • count = 0
  • # 获得锁,成功获得锁定后返回True
  • # 可选的timeout参数不填时将一直阻塞直到获得锁定
  • # 否则超时后将返回False
  • if lock.acquire():
  •     count += 1
  •     # 释放锁
  •     lock.release()
  • # thread模块提供的线程都将在主线程结束后同时结束
  • time.sleep(6)


复制代码

thread 模块提供的其他方法:
thread.interrupt_main(): 在其他线程中终止主线程。
thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。 3. threadingthreading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。threading 模块提供的常用方法:
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。threading模块提供的类:  
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.
3.1. ThreadThread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():
  • # encoding: UTF-8
  • import threading
  • # 方法1:将要执行的方法作为参数传给Thread的构造方法
  • def func():
  •     print 'func() passed to Thread'
  • t = threading.Thread(target=func)
  • t.start()
  • # 方法2:从Thread继承,并重写run()
  • class MyThread(threading.Thread):
  •     def run(self):
  •         print 'MyThread extended from Thread'
  • t = MyThread()
  • t.start()

复制代码

构造方法:
Thread(group=None, target=None, name=None, args=(), kwargs={})
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 线程名;
args/kwargs: 要传入方法的参数。实例方法:
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。
get/setName(name): 获取/设置线程名。
is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。
start(): 启动线程。
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。一个使用join()的例子:
  • # encoding: UTF-8
  • import threading
  • import time
  • def context(tJoin):
  •     print 'in threadContext.'
  •     tJoin.start()
  •     # 将阻塞tContext直到threadJoin终止。
  •     tJoin.join()
  •     # tJoin终止后继续执行。
  •     print 'out threadContext.'
  • def join():
  •     print 'in threadJoin.'
  •     time.sleep(1)
  •     print 'out threadJoin.'
  • tJoin = threading.Thread(target=join)
  • tContext = threading.Thread(target=context, args=(tJoin,))
  • tContext.start()

复制代码

运行结果:
  • in threadContext.
  • in threadJoin.
  • out threadJoin.
  • out threadContext

复制代码

3.2. LockLock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。构造方法:
Lock()实例方法:
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。
  • # encoding: UTF-8
  • import threading
  • import time
  • data = 0
  • lock = threading.Lock()
  • def func():
  •     global data
  •     print '%s acquire lock...' % threading.currentThread().getName()
  •     # 调用acquire([timeout])时,线程将一直阻塞,
  •     # 直到获得锁定或者直到timeout秒后(timeout参数可选)。
  •     # 返回是否获得锁。
  •     if lock.acquire():
  •         print '%s get the lock.' % threading.currentThread().getName()
  •         data += 1
  •         time.sleep(2)
  •         print '%s release lock...' % threading.currentThread().getName()
  •         # 调用release()将释放锁。
  •         lock.release()
  • t1 = threading.Thread(target=func)
  • t2 = threading.Thread(target=func)
  • t3 = threading.Thread(target=func)
  • t1.start()
  • t2.start()
  • t3.start()

复制代码


3.3. RLockRLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。 构造方法:
RLock()实例方法:
acquire([timeout])/release(): 跟Lock差不多。
  • # encoding: UTF-8
  • import threading
  • import time
  • rlock = threading.RLock()
  • def func():
  •     # 第一次请求锁定
  •     print '%s acquire lock...' % threading.currentThread().getName()
  •     if rlock.acquire():
  •         print '%s get the lock.' % threading.currentThread().getName()
  •         time.sleep(2)
  •         # 第二次请求锁定
  •         print '%s acquire lock again...' % threading.currentThread().getName()
  •         if rlock.acquire():
  •             print '%s get the lock.' % threading.currentThread().getName()
  •             time.sleep(2)
  •         # 第一次释放锁
  •         print '%s release lock...' % threading.currentThread().getName()
  •         rlock.release()
  •         time.sleep(2)
  •         # 第二次释放锁
  •         print '%s release lock...' % threading.currentThread().getName()
  •         rlock.release()
  • t1 = threading.Thread(target=func)
  • t2 = threading.Thread(target=func)
  • t3 = threading.Thread(target=func)
  • t1.start()
  • t2.start()
  • t3.start()

复制代码

ConditionCondition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。 可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。构造方法:
Condition([lock/rlock])实例方法:
acquire([timeout])/release(): 调用关联的锁的相应方法。
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。例子是很常见的生产者/消费者模式:
  • # encoding: UTF-8
  • import threading
  • import time
  • # 商品
  • product = None
  • # 条件变量
  • con = threading.Condition()
  • # 生产者方法
  • def produce():
  •     global product
  •     if con.acquire():
  •         while True:
  •             if product is None:
  •                 print 'produce...'
  •                 product = 'anything'
  •                 # 通知消费者,商品已经生产
  •                 con.notify()
  •             # 等待通知
  •             con.wait()
  •             time.sleep(2)
  • # 消费者方法
  • def consume():
  •     global product
  •     if con.acquire():
  •         while True:
  •             if product is not None:
  •                 print 'consume...'
  •                 product = None
  •                 # 通知生产者,商品已经没了
  •                 con.notify()
  •             # 等待通知
  •             con.wait()
  •             time.sleep(2)
  • t1 = threading.Thread(target=produce)
  • t2 = threading.Thread(target=consume)
  • t2.start()
  • t1.start()

复制代码

Semaphore/BoundedSemaphoreSemaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。构造方法:
Semaphore(value=1): value是计数器的初始值。实例方法:
acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。
release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。
  • # encoding: UTF-8
  • import threading
  • import time
  • # 计数器初值为2
  • semaphore = threading.Semaphore(2)
  • def func():
  •     # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
  •     print '%s acquire semaphore...' % threading.currentThread().getName()
  •     if semaphore.acquire():
  •         print '%s get semaphore' % threading.currentThread().getName()
  •         time.sleep(4)
  •         # 释放Semaphore,计数器+1
  •         print '%s release semaphore' % threading.currentThread().getName()
  •         semaphore.release()
  • t1 = threading.Thread(target=func)
  • t2 = threading.Thread(target=func)
  • t3 = threading.Thread(target=func)
  • t4 = threading.Thread(target=func)
  • t1.start()
  • t2.start()
  • t3.start()
  • t4.start()
  • time.sleep(2)
  • # 没有获得semaphore的主线程也可以调用release
  • # 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
  • print 'MainThread release semaphore without acquire'
  • semaphore.release()

复制代码

EventEvent(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。构造方法:
Event()实例方法:
isSet(): 当内置标志为True时返回True。
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。
clear(): 将标志设为False。
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。
  • # encoding: UTF-8
  • import threading
  • import time
  • event = threading.Event()
  • def func():
  •     # 等待事件,进入等待阻塞状态
  •     print '%s wait for event...' % threading.currentThread().getName()
  •     event.wait()
  •     # 收到事件后进入运行状态
  •     print '%s recv event.' % threading.currentThread().getName()
  • t1 = threading.Thread(target=func)
  • t2 = threading.Thread(target=func)
  • t1.start()
  • t2.start()
  • time.sleep(2)
  • # 发送事件通知
  • print 'MainThread set event.'
  • event.set()

复制代码

TimerTimer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。构造方法:
Timer(interval, function, args=[], kwargs={})
interval: 指定的时间
function: 要执行的方法
args/kwargs: 方法的参数实例方法:
Timer从Thread派生,没有增加实例方法。
  • # encoding: UTF-8
  • import threading
  • def func():
  •     print 'hello timer!'
  • timer = threading.Timer(5, func)
  • timer.start()

复制代码

locallocal是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。
  • # encoding: UTF-8
  • import threading
  • local = threading.local()
  • local.tname = 'main'
  • def func():
  •     local.tname = 'notmain'
  •     print local.tname
  • t1 = threading.Thread(target=func)
  • t1.start()
  • t1.join()
  • print local.tname

复制代码

熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:
  • # encoding: UTF-8
  • import threading
  • alist = None
  • condition = threading.Condition()
  • def doSet():
  •     if condition.acquire():
  •         while alist is None:
  •             condition.wait()
  •         for i in range(len(alist))[::-1]:
  •             alist = 1
  •         condition.release()
  • def doPrint():
  •     if condition.acquire():
  •         while alist is None:
  •             condition.wait()
  •         for i in alist:
  •             print i,
  •         print
  •         condition.release()
  • def doCreate():
  •     global alist
  •     if condition.acquire():
  •         if alist is None:
  •             alist = [0 for i in range(10)]
  •             condition.notifyAll()
  •         condition.release()
  • tset = threading.Thread(target=doSet,name='tset')
  • tprint = threading.Thread(target=doPrint,name='tprint')
  • tcreate = threading.Thread(target=doCreate,name='tcreate')
  • tset.start()
  • tprint.start()
  • tcreate.start()


复制代码




4.jpg
3-1.jpg
3.jpg
2.jpg
1.jpg
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
发表于 2012-11-6 16:18:34 | 显示全部楼层
支持LZ,这个是好东西啊,尤其是图……,就算不是python写的,其他语言也很通用啊{:1_1:}
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
发表于 2013-3-15 11:52:23 | 显示全部楼层
。。。。表示看了你头像不淡定了
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
发表于 2013-3-30 09:25:32 | 显示全部楼层
thanks a lot
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
发表于 2013-8-4 09:46:06 | 显示全部楼层
:shock:这种脚本语言和LUA有什么区别?  请大神指点
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2013-9-20 00:34:02 | 显示全部楼层
楼主的头像太好了。贴中的图是用什么工具画的啊?
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2014-10-25 01:28:57 | 显示全部楼层
看了你头像不淡定了
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2024-4-25 07:21

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表